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A method is proposed for determination of nonstationary fields of mathematical expectation, second 
moments, and dispersion of a stochastic nonstationary temperature field for inhomogeneous bodies of 
an arbitrary form and dimension with arbitrary stochastic boundary conditions. 

The stochastic distribution of a nonstationary temperature in a body takes place when its controlling factors, 

namely, internal heat sources, surface heat sources, ambient temperature or initial temperature in the body, coefficients of 
heat transfer from the body surface to a medium, are stochastic. The stochastic character of these factors, nonstationary in 
the general case, is conditioned by random fluctuations of external effects and the surrounding medium. The analysis of 
random fluctuations of the power consumed by different technical systems from external sources of power supply, the 

medium temperature, the heat fluxes incident on an object surface from outside, e.g., solar radiation, and so on shows that 
they are manifested, as a rule, in the form of random deviations about some mean value and their nearest, with respect to 
time, amplitudes are, in fact, not correlated between each other. This allows one to model them as stochastic white noises 

or as Wiener stochastic processes with independent increments. The stochastic nonstationary temperature fields are 

described by partial differential equations and boundary conditions in which all the functions and coefficients are random 

functions of time and coordinates. 
In engineering applications such statistical measures as the fields of mathematical expectations and second moments 

of stochastic temperature distributions describe sufficiently completely the stochastic processes of heat transfer in different 

objects. The fields of those statistical measures allow determination of the intervals within which real temperatures change. 
The current method of the stochastic Green function [1, 2] makes it possible to model stochastic temperature fields 

in the cases where the Green function may be found analytically, which restricts its application. 
In the present work, the numerical method is proposed for determination of the nonstationary fields of statistical 

measures, i.e., the mathematical expectation and second moments of the stochastic nonstationary temperature field in 
bodies of complex geometry and any dimension described by the stochastic nonstationary partial differential heat conduc- 
tion equation. The method rests on the theory of stochastic differential Ito equations as applied to the system of stochastic 

ordinary differential equations obtained after approximation of the initial stochastic mathematical model by its discrete 

analog. 
Stochastic Mathematical Model and Its Discrete Analog. The stochastic nonstationary temperature field u(x, t, 

o~) in the three-dimensional inhomogeneous body D E R 3, x = (xl, x2, x3) with the boundary S is described by the 

following equation: 

Ou 
9c - - A ( x ,  t, ~o)u = f (x ,  t, co), (x, t, o3)ED • [0, T] • fl,, (1) 

Ot 

with the boundary condition 

and the initial one 

B (x, t, (o)u = q (x, t ,  co), (x, t, co)E S x [0, T] • fl, (2) 

u(x, 0, co)= u0(x, ~o), (x, o) ED • f~, 
(3) 
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where f(x, t, co), q(x, t, co) are random functions of  time t and coordinates x modeling the stochastic internal and surface 
heat sources; A(x, t, co) is the stochastic operator of the equation 

Au = ~" ~. (x, t) - -  b (x, t, (o) u; (4) 
i ~ l  

B(x, t, co) is the stochastic operator of  boundary conditions of  one of the three kinds: 

Ou 
Bu = u, Bu = ~, (x, t) -~n ' Bu = ;s (x, t) OUon + a (x, t, o~) u; (5) 

X(x, t), O, c are the thermal conductivity, density, and specific heat, respectively; b(x, t, co), or(x, t, co) are random 
functions of  t and x; c~(x, t, co) models the stochastic coefficient of heat transfer from the body surface to the medium; 
u0(x, co) is the random field of  the initial temperature. For the sake of clarity, the ambient temperature in the third-kind 
boundary conditions is assumed equal to zero. Account of  a nonzero temperature, which may be stochastic, presents no 
difficulties. 

The random functions f(x, t, co), q(x, t, co), b(x, t, co), a(x,  t, co) represent independent Ganssian white noises with 
the continuous-in-time mathematical expectations f(x, t), q(x, t), b(x, t), o~(x, t) and the continuous-in-time and limited 
intensities Dr(x, t), Dq(x, t), Db(x, t), D~(x, t), respectively. We write the random functions f, q, b, c~ as sums of their 
mathematical expectations and stochastic centered fluctuations with zeroth mathematical expectations, i.e., 

[ = - ~ §  q = ~ + q O ,  b = b + b  o, ~ = ~ §  0. (6) 

The stochastic fluctuations fo = fO(x ' t, co), qO = qO(x ' t, co), b ~ = b~ t, co), c~ ~ = c~~ t, co) are Gaussian white noises 

in time t with zeroth mathematical expectations and are described as the formal derivative with respect to time from 
Wiener processes with independent increments. The stochastic fluctuations fo, qO, b 0, cx0 will be considered to be statisti- 
cally independent for any two points x = (x, x2, x3) E I3 (13 = D + S). The Wiener processes dWf = f~ dWq = q~ 
dWb = b~ and dW~ = o~~ are characterized by the following relations: 

M {dVe~} = O, M { d % }  = O, M {dW~} = O, M {dW~} = 0 

and for any two points x, y C 13 

M {dW I (x, t, o~) dlI7 t (y, t, ~)} = 6xyD t (x, t) dt, x, y E D, 

M {d~llTq (x, t, o)dWq(y ,  t, co)} = 6~yD~ (x, t )d t ,  x, y E S, 

M {dllTb(x, t, o))dWb(y, t, co)} =6x~Db(x,  t)dt, x, yE D, 

M {dWc, (x, t, o~) dllT,, (y, t, co)} = 6~yD~, (x, t) dt, x, y E S; 

where 6xy = 1 if x = y, 6xy = 0 if x ~ y; M{" } is the operator of mathematical expectation. 
For the sake of  concreteness and generality of presentation we shall consider the third-kind boundary condition. 
Substituting (6) into the initial mathematical model (1)-(3), we obtain 

Ou 
oc - -  71 (x, t) u + b~ (x, t, o~) u = -[(x, t) + fo (x, t, co), 

Ot (7) 

(x, t, co) E D • [0, TI • -q, 

-B(x, t)u +~O(x,  t, o~)u----q(x, t) +qO(x, t, o~), (8) 

(x, t, o~)E S x [0, TI • fa, (9) 

u (x, O, oa)= uo' (x, co), (x, co)E D • f~, 

where A(x, t) and B(x, t) are the mathematical expectations of  operators of the equation and the third-kind boundary 
conditions, equal, respectively, to 

a d 0 ) _ b-(x, t), (10) 

0 
T3 (x, t) = ~, (x, t) - ~ n  + ~ (x, t). (11) 
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We pass to obtaining the discrete analog of stochastic mathematical model (7)-(11). For  this, we employ the 

integrointerpolation method [4] or the control volume method [5], which make it possible to obtain conservative homoge- 

neous difference schemes with second order of accuracy in the class of discontinuity coefficients. 

We subdivide the region D e R ~ into n control volumes by equidistant planes parallel to the axes x~, x2, x3. Let one 

node be centrally located inside each control volume. We designate the set of  all internal nodes of  the region as D~ and its 

appropriate internal control volumes as D i, i = 1, 2, . . . ,  n~. The boundary control volumes are designated as S~, i = 1, 2, 

.... n:; each control volume S~ has one node being only on the surface S of  the region D; the set of  all n 2 boundary nodes 
is designated by Sn. Also, we introduce the set of  near-boundary nodes D.h, formed by the internal nodes from the set D~ 

nearest to the boundary S but not belonging to it [4]. The total number of  the nodes n = n~ + n~ from the set Dh + S~ will 

be called a network. 
Following the control volume method, we integrate Eq. (7) for each o~efl with respect to all n~ internal control 

volumes D~. As a result, we arrive at 

du~, ---Ah(t)un + b ~ (t, o)u~, = ~ ( t )  q- f~ (t, o), (12) pc dt 

where Uh = uh(t, CO) is a random function of  the network, determined at the network nodes Dh + Sh representing the n- 

dimensional random column-vector uh -- (u~(t, CO) ... Un(t, CO); U~ = Uhl(t, CO) is a random function of  the network deter- 

mined at the internal network nodes D h, representing an nl-dimensional random vector-column; b~ ~o), fOal(t, w) are 

random functions of  the network determined at the internal nodes D h, representing the n~-dimensional random column- 

v e c t o r s  b~ w) = (b~ CO) ... b~ CO)T, f0hl(t ' CO) = (f0~X(t, CO) ... f0~(t, (.o)T; here 

b ~ (t, o ) =  vthl. D~ S'b~ (x, t, o) dD~, fo (t; o) = I--L-V~, D~ ~ fo (x, t, o 0 dD,; (13) 

VDi is the volume of  De b~t(t) = (b~t) ... b,~(t)) T, f,~(t) = (f~(t) ... f,t))T are determinate nt-dimensional column-vectors; 

here 

~(t)----- Vn--'-~,o,1 ~ "b, (x, t) dD,, ~ (t) = VD-"-~,'I S ~ (x, t) dO,; (14) 

~,h(t) is a determinate nonstationary difference operator leaving the network function u h only at the neighboring nearest 

nodes surrounding each internal node from Dh; T stands for transposition. 
System of  equations (12) consists of  n~ equations for n unknown random temperatures ut(t, ~), i = 1, 2 . . . . .  n, at 

all the nodes from Dh + Sh. To obtain the lacking n2 equations, we perform integration of (7) over all the boundary control 

volumes S~, i = 1, 2 , . . . ,  n 2, with account of  boundary conditions (8). As a result, we have 

pc ~ duh~ Bh, (t) "h, +--bh.~ (t) uh2 +'~h2 (t) "ha + bg2 (t, co) uh~ + 
dt 

= --  o t +cz~ r Uh~. -f~,.'(t)+q~2(t)+fh2(, o)+qO~( t, 0), 

(15) 

where Uh2 = Uh2(t, co) is a random function of  the network determined at the boundary nodes from Sh,  representing an n 2- 

dimensional random column-vector; bh2(t), fh2(t), ah2(t), q~(t)  are determinate n2-colunm-vectors, where bi(t ) and fi(t) are 

determined by formulas like (14), ah2(t) = a l21( t )  ... an2(t)) T, %2(0 = (ql(t) "- qn2(t)) T are determinate network 

functions determined at the boundary nodes from Sh; Bh. is determinate nonstationary difference operator leaving the 

network function u h only at the boundary nodes from D h and near-boundary nodes from Dh., surrounding each boundary 

node from Sh; Uh, = Uh,(t, co) is a network function determined at the boundary and near-boundary nodes from D h -t- Dh,; 

b0h2(t, co), f0h2(t, co), a0h2(t, r q0h2(t, ~o), q0h2(t, co) are random n2-dimensional columns-vectors,  where b~ co) and 

f0i(t , co) are determined by expressions of  the form (13), and C~0h2(t, co) = (a01(t, co) ... u0n2(t, 60)) T, q0h2 (t, co) = (q01(t, 

co) ... q0n2(t ' co))T are random functions of the network determined at the boundary nodes S h. 
We introduce a network function of  Gaussian white noises N(t) with the dimension m = 2(n 1 + ~ )  determined on 

the set D h + S h, N(t) = (Nl(t) ... Nm(t)) T = (f01 -.. ton1, b0l -'- b0nl, ct01 "'" a0rt2 ' q01 "'" q0a2 )T' the network function 

of Wiener processes determined on the set D h + S h, dW(t) = (dWl(t) ... d "V" n(t)) T = (dWfl ... dWfnl, dWbl -" dWbnl, 
dWal ... dWanl,  dWql ... dWqn2) T and the diagonal m x m-matrix D(t), on whose diagonal we have the network 
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functions Dfl(t ) . . . . .  Dfnl(t), Dbl(0 . . . . .  Dbnl(t), Dal(t) ..... D~n2(t), Dql(t) . . . . .  Dqn2(t ). For the stochastic vector dW(t) 
the following relations are valid: 

dW (t) = N (t) dr, 

M {d~V (t)} = 0, 

M {dW (t) dW, (t)} = D (t) at. 

We obtain the discrete analog of stochastic mathematical model (1)-(3) by combining Eqs. (12), (15) into one stochastic 
matrix differential-difference equation 

pc au~ = ~ (t) u~ + ~h (t) § ~ (t, .~) N (t), (16) 
dt 

uh (0, o~) = Uoh (o~), (17) 

where A(t) is a determinate nonstationary n • n-matrix of the known coefficients;.~h(t , uh) is a stochastic nonstationary n 

• m-matrix dependent on the network random function th = uh(t, co); ~oh(t) is a determinate known n-dimensional column- 
vector including the vectors fhl(t), fh2(t), q~(t); uoh(~o) is a network random function of initial temperatures. 

Determination of Statistical Measures. Integrating formally Eq. (16) with respect to time within the limits from 
0 to t with the initial condition (17), we obtain the stochastic vector-matrix integral Ito equation [3, 6]: 

t t 

uh (t) = Uo~ + .f a (~, uh ('0) d~ ~- .f 1~ (~' u~ (~)) dW (% (18) 
0 0 

where a(t, uh) is the stochastic n-dimensional vector function 

a(t, un )=  

/3(t, uh) is the stochastic n • m-matrix function 

1 ~h (t) un (t) § ~ ~h (t); (19) 
pc pc 

1 
(t, uh) = ~h (t, Uh). 

pc 

The variable ~o here and henceforth is omitted for the sake of brevity. 

Stochastic integral equation (18) is equivalent to the vector-matrix stochastic differential Ito equation [6]: 

(20) 

dub(t) = a(t, Uh) + ~ (t, Uh) dW (l), uh (O) = Uoh. (21) 

As for the functions a(t, uh) and f3(t, uh) , we assume that they satisfy the conditions of the theorem of existence and 

uniqueness [6, 7] of the solution of the stochastic differential Ito equation (21) and are nonpredicting [8]. 
Reducing initial stochastic mathematical model (1)-(3) to stochastic equations (18) and (21) permits us to apply the 

Ito theory to them. 

We now determine the statistical measures of the stochastic vector uu(t, w), i.e., the n-vector of mathematical 

expectations fib(t) = M{uh(t, ~o)} and the n x n-matrix of the second initial moments C(t) = M{UhUTh}. The vector of 
dispersions Du(t) of stochastic temperatures uh(t, ~o) will be equal to the diagonal dements of the matrix of the second 
central moments K(t) = C(t) - fih(t)aTh(t). 

We introduce the continuous scalar function ff(uh) having continuous first derivative with respect to time and first 
and second derivatives with respect to all elements th of the vector u h, i = 1, 2 . . . . .  n. We apply the Ito formula [3, 8, 9] 
to the function ~b(uh), in which uh satisfies the stochastic equations (18) or (21), and we obtain 

d~ O~T a (t, uh) + __~__ tr { 0~ fiDe,} OqO r 
dt -- Ouh OUhOUh q- ~ [JN (t), (22) 

where O~./T/OUh ~- (0~ / /0U 1 . . .  0 r  T is the n-dimensional vector of the first derivatives of the function ~b over all ui, uj of 
the vector th; 02~b/0uhOuh = {02~b/0ujOui} is the n x n-matrix of the second derivatives of the function ~b over all u~, uj; tr{. } 
is the sign of the matrix {. } [3]. 
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We assume ~(Uh) = uh(t), substitute it into Eq. (22) and apply the operator of mathematical expectation. As a 
result, we obtain a matrix ordinary differential equation for the vector of mathematical expectation 0h(t): 

p c - -  dun (t) pca (t, "n) = -Jh (t) un (t) --}- "~h (t), 
dt (23) 

un (0) = ~'7o~, 

where fioh-iS the network function of mathematical expectation of initial temperatures. Let ~b = ui(t)uj(t), substitute it into 
Eq. (22) and apply the operator of mathematical expectation. As a result we obtain the matrix ordinary differential 

equation for determination of the n x n-matrix of the second initial moments C with the elements Cij(t) = M{ui(t, ~)uj(t, 

co)uj(t, co)}, i, j = 1, 2 , . . . ,  n: 

dC - -  --~ - ,  p c  
pc - -  = ~g n (t) C (t) 4- C (t) .An (t) -+- -~n (t) uh (t) 4- un (t) -~[ (t) , 4- 2 M { [3D~" }, 

dt (24) 

c (0) = Co, 

where Co = M{UohUToh} is the known n x n-matrix of the second initial moments of initial temperatures. 
The systems of ordinary differential equations for determination of the statistical measures a~(t) of (23) and C(t) of 

(24) are determinate and for their solution well developed computer programs may be used. 

Now we illustrate application of the above method. 
Example. Consider a rod with density o, specific heat c and thermal conductivity X, length f ,  the area and 

perimeter of its cross section equal to s and p, respectively, inside which there is a heat source with the intensity ,I,(x, t). 

At the rod ends zero temperatures are maintained. Heat transfer proceeds between the side surface and the medium with 
the temperature tdx, t) and the stochastic heat transfer coefficient ~(x, t, co) having the mathematical expectation ~(x, t) 

and the dispersion D~(x, t). 
The mathematical model is of the form 

Ou 02u pc . . . . . .  ) ~ - - - - b ( x ,  t, o~)(u--u~)w~a; ' (x ,  t), o~Cf~, 
Ot Ox ~ 

u (0) = u (Z) = O, 

u (x, 0) = Uo (x), x C [O, l], 

where b = ap/s  is the convective coefficient. 
We write c~(x, t, co) in the form c~(x, t, co) = a(x, t) + c~~ t, co), where ~o is the Gaussian white noise, being the 

formal derivative of the Wiener process dW~(x, t) = N(x, t)dt, N(x, t) = a~ t, co); here M{dW~} = 0, M{dW~(x, 

t)dW~(y, t)} = 6xyD~(x, t)dt, x, ye[0,/]. 
After subdividing the rod length [0,/] into control volumes with the length h and applying the integrointerpolation 

method, we arrive at the stochastic analog 

pc dub = -~n (t) uh (t) + ~h (t) + .~h (t, uh) ~V (t), 
dt 

where uh(t) = (ul(t) ... uh(t) T is a vector of random temperatures at the rod nodes to be determined; 

[---  28 - -  bl (t) 6 0.. .  0 0 -1 
| 6 - 28--  -5. (t) ~... o o ] , 8  = ~lh; 

1k " o . . . .  o . . . . .  o . . ;  

where bi(t) = M{bi(t, co)} is the mathematical expectation of the convective coefficient at the node i; 

k * ,  (t) + 7 ,  (t) uc, (t) ] 
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x 1 x. I 
i+y  ~+-~ 

, ,  (t) = M ~ ,i, (~, t)a~,  ~, (t) = M ~ t, (~, t, 
X g 

1 I 
2 2 

Bh(t, UO is a square stochastic diagonal n x n-matrix equal to 

co) dx, u~i = u~ (xi); 

- - -  U 1 ( t )  --~ U e l  ( t )  0 , . .  0 ] 

~h (t, Uh) = 0 - -  U.. (t) + U~ (t) ... 0 ] ; 

' o  . . . . . .  o . . . .  .. :- L i,) 

N(t) = (b~ . . . . .  b~ T is the n-dimensional vector of Gaussian white independent noises. 
-According to formulas (23), (24) we obtain matrix equations for determination of the statistical measures of the 

stochastic vector o f  temperatures uh(t): 
the vector of mathematical expectation fib(t) 

the correlation matrix C(t) 

d~ 
p c ~  

dt 
=.J-Th (t) ~h (t) + -~h (t). ~ (0) = ~o~; 

pc dC (t) = -Jh (t) C (t) + C (t) ~ (t) + -~h (t) -~ (t) +-~h (t)-~g (t) + 
dt 

1 
+ ~ {diag C (t) + U(t)} D~ (t), C(0) = Co, 

2pc 

where diag C(t) is a diagonal matrix composed of the diagonal elements of the matrix C(t); U(t) is a diagonal matrix with 
the elements uaci(t) - 2fii(t)uci(t); Db(t) is the diagonal matrix of dispersions of the convective coefficients bi(t, w), i = 1, 
2 . . . . .  n, the i-th element of the matrix Db(t ) is equal to Dbi(t) = D~i(t)p/s. 

Conclusion. The equations obtained allow one to determine numerically the nonstationary distributions of mathe- 
matical expectation and second moments of the stochastic nonstationary temperature field described by the three-dimension- 
al stochastic nonstationary heat conduction equation in partial derivatives with arbitrary boundary conditions. The region 
for which nonstationary statistical measures are to be determined is inhomogeneous and of arbitrary configuration. The 
method is easily programmable, and it may serve as a basis for developing program packages for analysis of nonstationary 

stochastic three-dimensional temperature fields of complex geometry. 

NOTATION 

u(x, t, ~), stochastic nonstationary temperature field; fl, space of elementary events ~; A(x, t, ~), stochastic 
nonstationary operator of the heat conduction equation; B(x, t, o~), stochastic nonstationary operator of boundary condi- 
tions; f(x, t, w), random function of time t and coordinates x with mathematical expectation f(x, t) and dispersion Dr(x, t); 
fo, stochastic fluctuation, being Gaussian white noise; dWf, Wiener process; uh(t, o~), network random function of tempera- 
ture determined at the network nodes of the region; Ah(t), difference nonstationary operator; Qh(t), C(t), vector of mathe- 
matical expectation and matrix of second initial moments of the stochastic vector of temperatures uh(t ). 
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